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Abstract
We consider a strongly correlated ladder with diagonal hopping and exchange
interactions described by a t–J type Hamiltonian. We study the dynamics
of a single hole in this model in the presence of a static non-magnetic (or
magnetic) impurity. In the case of a non-magnetic (NM) impurity we solve
the problem analytically both in the triplet (S = 1) and singlet (S = 0)
sectors. In the triplet sector the hole does not form any bound state with
the impurity. However, in the singlet sector the hole forms bound states of
different symmetries with increasing J/t values. Binding energies of those
impurity–hole bound states are compared with the binding energy of a pair
of holes in the absence of any impurity. In the case of magnetic impurity
the analytical eigenvalue equations are solved for a large (50 × 2) lattice.
In this case also, with increasing J/t values, impurity–hole bound states of
different symmetries are obtained. Binding of the hole with the impurity is
favoured for the case of a ferromagnetic (FM) impurity rather than the case of
an antiferromagnetic (AFM) impurity. However, the binding energy is found to
be maximum for the NM impurity. Comparison of binding energies and various
impurity–hole correlation functions indicates a pair-breaking mechanism by the
NM impurity.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the discovery of high-Tc superconductivity [1] the nature of the order parameter, the
symmetry of the bound pair of holes,has been a hotly debated issue [2–10]. It is well known that
in the case of conventional superconductors the introduction of magnetic impurities drastically
suppresses the transition temperature Tc. Also theoretically it was predicted that magnetic
impurities are strong pair breakers for conventional superconductors [11], while non-magnetic
(NM) impurities have a pair-breaking effect only for higher orbital momentum states [12, 13]
such as the d-wave pairing state. There have been extensive studies on the effect of doping the
high-Tc cuprate systems with static magnetic and NM impurities in the last decade [14–17].
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Experimental studies have shown that divalent Zn and Ni ions replace the Cu2+ ions in the
CuO2 planes and Zn (the NM impurity) is more effective than Ni (the magnetic impurity) in
destroying superconductivity. It was suggested by some groups [14, 18, 19] that NM impurities
do not simply act as vacancies but induce local magnetic moments in the CuO2 planes, and
the mechanism is still a magnetic pair-breaking mechanism. However, other experimental
studies [20] have indicated that the estimated impurity moment-carrier exchange in Zn-doped
YBCO is too small to account for the suppression of Tc by a magnetic pair-breaking mechanism
satisfactorily. Moreover, the observed difference in behaviour of Zn- and Ni-doped systems
could not be properly explained.

In order to explain all these features qualitatively, Poilblanc et al initiated numerical
studies on a microscopic model, the t–J model. In a series of papers [21–23] they studied the
effect of magnetic and NM impurities in very small clusters in two dimensions. Based upon
their calculation of local density of states in the presence of an impurity (NM or magnetic),
they discovered the existence of successive impurity–hole bound states of d-, s- and p-wave
symmetries with increasing J/t values [21, 22]. From the analysis of impurity–hole binding
energies and quasiparticle weight of a pair of holes [23] they concluded that an NM impurity has
a stronger pair-breaking effect than a magnetic impurity. In this respect we also looked at the
effect of magnetic and NM impurities on single hole dynamics in a t–J ladder model introduced
by Bose and Gayen [24]. The existence of a bound hole pair and superconducting correlations
in a t–J ladder model was first numerically shown by Dagotto et al in 1992 [25]. Later, Gayen
and Bose [26, 27] proved analytically that the two holes form a bound propagating object in
the ground state with a modified d-wave symmetry and the superconducting correlations exist
in a t–J ladder model with diagonal interactions.

We divide the paper into the following sections. In section 2 we briefly introduce the
model and recapitulate the exact results in the undoped limit as well as for single and two
holes doped cases. In section 3 we derive analytical results for single hole dynamics in the
presence of a static NM impurity. In section 4 we consider the hole in presence of a static
magnetic impurity. In the last section (section 5) we conclude by speculating the implication
of a pair-breaking mechanism by NM impurities in our model.

2. The model

The ladder model shown in figure 1 consists of two chains joined together by rungs and
diagonals. The model is described by the following Hamiltonian:

H = −
∑

〈i, j〉σ
ti j

(
C†

i,σC j,σ + H.c.
)

+
∑

〈i, j〉
Ji j �Si · �Sj . (1)

The hopping integral along the solid (dashed) line is t (t ′). The corresponding AFM exchange
interaction is J (J ′). The spins are of magnitude 1

2 and a single occupancy constraint is strictly
enforced in our model. We use periodic boundary conditions (PBCs). In the undoped limit
the ground state consists of singlets along the vertical rungs when 2J = J ′ [24] with ground
state energy EG = − 3

4 J ′N . Actually this is the ground state for J ′ > 1.401 484 038 97J [28].
In this paper we shall consider J ′ = 2J for simplicity. However, the results are exact for all
values of J ′ > 1.401 484 038 97J . When the ladder is doped by a single hole, depending upon
the value of J/t the ground state may consist of either the hole bound to an adjacent triplet
excitation or the hole can coherently propagate through a sea of singlets [29]. When the ladder
is doped with two holes, the ground state consists of a coherently propagating bound state of
two holes of modified d-wave symmetry [26].
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Figure 1. The ladder model with
diagonal coupling.

In this context it is important to note that ladder models are not only of theoretical
interest but also of experimental relevance [30]. Hiroi et al [31] synthesized the family of
compounds Srn−1Cun+1O2n that can be described well by ladder geometry [32, 33]. Müller
and Mikeska [34] discussed the elementary excitations in the compound KCuCl3 which is
described by an AFM ladder model with additional diagonal couplings. The compound
LaCuO2.5, formed by an array of weakly interacting ladders [35], could be doped with holes [36]
on replacing La by Sr. Furthermore, the discovery of superconductivity in the doped ladder
compound Sr14−x Cax Cu24O41 by Uehara et al [37] gave a tremendous impetus to theoretical
and experimental research works on ladders.

3. Non-magnetic impurity

The NM impurity is modelled as an inert site located on the first rung of the ladder. PBCs
are implied. The ground state consists of singlets along all the rungs except for the first rung,
where there is a free spin- 1

2 along with the impurity. For N rungs the ground state energy will
be Eg = − 3J ′

4 (N − 1). A single hole can be added in the singlet state by removing the free
spin. It can be added to another rung thereby creating another free spin also. The two free
spins in the first rung and in the other rung, where a hole had been added, can combine to form
either a singlet (S = 0) or triplet (S = 1) state.

3.1. Triplet (S = 1) sector

In the triplet sector we can generate a closed subspace of basis states φ(1), φ(2), . . . , φ(N −1),

φ(1) = ∗
↑

1√
2
(
↑
O+O

↑ )|| · · ·

φ(2) = ∗
↑| 1√

2
(
↑
O+O

↑ )|| · · ·

φ(r) = ∗
↑|| · · 1√

2
(
↑
O+O

↑ )|| · · ·

(2)

where the argument r implies that the hole is on the (r + 1)th rung. The vertical solid line
along the i th rung stands for a singlet ( 1√

2
(c2i−1↑c2i↓ − c2i−1↓c2i↑)). A general eigenfunction

� = ∑N−1
i=1 aiφ(i) with energy eigenvalue E satisfies the following eigenvalue equations:

(
ε − J

4

)
a1 = ta2

εa2 = t (a1 + a3)

· · · · · · = · · · · · ·
εaN−2 = t (aN−1 + aN−3)(
ε − J

4

)
aN−1 = taN−2

(3)
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where ε = E − 3J ′
4 + t ′. The energy eigenvalue E is measured with respect to the ground

state energy Eg. The above eigenvalue equations can be solved analytically with symmetric
(an = cos(k(N/2 − n))) or antisymmetric (an = sin(k(N/2 − n))) eigenfunctions. In
the symmetric case the energy eigenvalues are obtained from simultaneous solution of the
equations

ε = 2t cos(k)

ε − J

4
= t

cos(k(N/2 − 2))

cos(k(N/2 − 1))
.

(4)

In the antisymmetric case the corresponding equations are

ε = 2t cos(k)

ε − J

4
= t

sin(k(N/2 − 2))

sin(k(N/2 − 1))
.

(5)

In the limit N → ∞ we get a continuum of extended states for real values of k. When J > 4t
we can derive antibound state solutions in both cases for imaginary values of k (k replaced
by ik). The antibound states are localized states lying above the continuum of extended states
with energy eigenvalue Eab = 3J ′

4 − t ′ + J
4 + 4t2

J . However, for any positive value of J the hole
does not form a bound state with the impurity in the triplet sector.

3.2. Singlet (S = 0) sector

The motions of a hole in the presence of an NM impurity was reported by Bose and Gayen [38]
earlier. For the sake of convenience we briefly review the salient features here. A basis state
φi will have the hole located in the i th rung. There will be singlets residing on all N − 2
rungs except the first and i th rungs. The electronic spins on the first and i th rungs will form
a singlet. In the basis state φ1 both the impurity and the hole are on the first rung. A general
eigenfunction will have the form� = ∑N

i=1 aiφi . The exact amplitude equations derived from
the time-independent Schrödinger equation with energy eigenvalue E (measured with respect
to the ground state energy Eg) are

(
ε +

3J ′

4
− t ′

)
a1 = t

√
2(a2 + aN )

(
ε +

3J

4

)
a2 = −t

√
2a1 + ta3

εa3 = t (a2 + a4)

· · · · · · = · · · · · ·
εaN−1 = t (aN + aN−2)(
ε +

3J

4

)
aN = −t

√
2a1 + taN−1

(6)

where ε = E − 3J ′
4 +t ′. In this problem the eigenfunctions are also symmetric or antisymmetric

with respect to reflection about the first rung containing the impurity. In both cases for real
values of k one gets extended states. With appropriate choice of complex values of k one can
discover bound (k → π + ik) or antibound (k → ik) states in the symmetric sector. In the
case of antisymmetric wavefunction one only discovers bound state solutions. In the N → ∞
limit, we derive the following results.
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Figure 2. Binding energy �B/t versus J/t for bound states of different symmetries in the case of
an NM impurity. The binding energy of a pair of holes is also shown in the figure (t ′/t = 1.0).

(a) For the symmetric eigenfunctions, (i) for J < 2
3

[
t ′
2 + 2t −

√
8t2 + ( t ′

2 )
2
]
, there can be no

bound state solution; (ii) for J > 2
3

[
t ′
2 − 2t +

√
8t2 + ( t ′

2 )
2
]
, we do not find any antibound

state; (iii) for J > 2
3

[
t ′
2 + 2t +

√
8t2 + ( t ′

2 )
2
]
, we always find two bound states.

(b) In the case of antisymmetric eigenfunctions, we always get one and only one bound state
provided J > 4t N

3(N−2) . In the N → ∞ limit, the bound state in the antisymmetric sector

has energy E = 3J ′
4 − t ′ − 3J

4 − 4t2

3J .

We use the following quantitative definition of the impurity–hole binding energy
introduced by Poilblanc et al [21, 23]:

�B(1h, 1i) = (E(1h, 1i)− E(0h, 1i))− (E(1h, 0i)− E(0h, 0i)). (7)

Figure 2 shows the plot of binding energy (�B/t) as a function of exchange interaction (J/t) in
different symmetry channels. We also compare the binding energy of a pair of holes computed
from the results of Gayen and Bose [26] in the same figure. The binding energy of two holes
in the absence of impurity is defined as

�B(2h, 0i) = (E(2h, 0i)− E(0h, 0i))− 2(E(1h, 0i)− E(0h, 0i)) (8)

where E(nh, 0i) is the ground state energy in the presence of n holes and 0 impurity. E(1h, 1i)
is the lowest energy in the presence of one hole and one impurity in the particular symmetry
channel.

From figure 2 we find that for any positive value of J/t there is always one bound state
in the symmetric (symmetric 1) channel. For J/t > 4

3 one can find another bound state in
the antisymmetric channel. Another bound state is obtained in the symmetric (symmetric 2)
channel for all values of J/t > 3.581 52. The co-existence of the bound states in different
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Figure 3. Impurity–hole correlation Cih in the ground state as a function of the distance dih of the
hole from the NM impurity (t = t ′ = 1.0).

symmetry channels is analogous to the appearance of d-, s-, and p-wave bound states in 2D
clusters studied by Poilblanc et al [21]. However, there is one significant difference in the
ladder. The sequence of the bound states appearing in symmetry channels of different parity
(even–odd–even) is different from that (even–even–odd) obtained by Poilblanc et al [21]. The
most significant observation from the graph is that the impurity–hole binding energy in the
lowest symmetric sector has magnitude greater than the binding energy of a pair of holes for
J/t > 0.74. For 2D finite clusters Poilblanc et al [21] found the binding energy curve for the
pair of holes to be lowest.

In order to have more understanding of the nature of impurity–hole binding we plot
(figure 3) the impurity–hole correlation function Cih( j − 1) (= 〈ni (1)nh( j)〉) as a function of
the distance dih between the impurity and the hole in the ground state. When the hole shares
the same rung with the impurity, there is no extra cost of energy due to broken singlets along
the rungs. If the hole sits one rung away from the impurity, one additional singlet along the
rung is broken. But this loss of energy can be compensated by the creation of an extra singlet
between the two free spins sitting on the two rungs which are occupied by the impurity and
hole also. Moreover, the hole can gain kinetic energy of the amount −t ′ when it stays one rung
away from the impurity. As a result the hole likes to sit one rung away from the impurity in
the ground state for smaller values of J (with t = t ′ = 1). However, with increasing J values
the probability of the hole sharing the same rung with the impurity increases rapidly.

4. Magnetic impurity

We assume the static impurity to be a spin- 1
2 object that interacts with neighbouring spins via

exchange interaction J ′
m (along the rung) and Jm (along horizontal and diagonal bonds). The
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dynamics of the system is governed by Himp, which is essentially the Hamiltonian introduced
in equation (1) with the fact that the electrons cannot hop on to the impurity site and the spin at
the impurity site interacts with the neighbouring spins with different strengths. We assume that
the static impurity sits on the first rung. We use PBCs. In the absence of any hole the ground
state consists of singlets along all the rungs with energy eigenvalue −( 3J ′

4 (N − 1) + 3J ′
m

4 ) if
the impurity exchange interaction is AFM. For FM exchange interaction, all the rungs, except
the first one, are singlets. The first rung, where the magnetic impurity is located, has S = 1
configuration. The corresponding energy eigenvalue is −( 3J ′

4 (N − 1) + |J ′
m |
4 ). A single hole

can be doped in the first rung to create the state

χ =↑∗
O || · · · . (9)

We can diagonalize the Hamiltonian within a closed subspace of basis states denoted by χ ,
φ(1), φ(2), . . ., φ(N − 1), θ(1), θ(2), . . ., θ(N − 1), ψ(1), ψ(2), . . ., ψ(N − 1). The states
are pictorially represented in the following way:

φ(r) =
(

1√
2

)↑∗

↑
|| · · · (O

↓ +↓
O) · · · ||

θ(r) =
(

1√
2

)↑∗

↓
|| · · · (O

↑ +↑
O) · · · ||

ψ(r) =
(

1√
2

)↓∗

↑
|| · · · (O

↑ +↑
O) · · · || (10)

where the argument r implies that the hole is located in the (r + 1)th rung. A general
eigenfunction will have the following form:

� = a0χ +
N−1∑

r=1

brφ(r) +
N−1∑

r=1

crθ(r) +
N−1∑

r=1

drψ(r). (11)

Clearly the total number of basis states will be mm = 1+3(N −1), and we have to diagonalize
an mm × mm Hamiltonian to find the eigenvalues and eigenfunctions. In our numerical
calculations we take J ′

m = 2Jm , in accordance with the interactions (J ′ = 2J ) in between the
host spins. In this case the eigenfunctions are also found to be symmetric (bn = bN−n, cn =
cN−n, dn = dN−n) or antisymmetric (bn = −bN−n, cn = −cN−n, dn = −dN−n). The lowest
energy eigenstate is always obtained in the symmetric sector for both FM and AFM impurities.
In figure 4 we compare the binding energy of bound states in different symmetry channels for
FM, AFM and NM impurities. The results obtained indicate that the binding of a doped hole
with the impurity is favoured in the case of an FM impurity. Binding occurs for a weakly AFM
impurity also. However, the binding energy in a particular symmetry channel is maximum
if it is an NM impurity. In figure 5 we plot the binding energy in the ground states for FM
(Jm = −0.5) and AFM (Jm = 0.5) impurities and compare them with that in the case of an
NM impurity.

In figure 6 we plot the impurity–hole correlation function (Cih) for different types of
impurities. We notice that the impurity–hole correlation is maximum when the hole is just
one rung away from the impurity. This is expected from figure 3 for the present choice of
parameters (J = t = t ′). When the hole is one rung away from the impurity, all other
parameters remaining the same, the magnitude of the correlation function is maximum for an
AFM impurity and minimum for an FM impurity. Actually for an AFM impurity all three basis
states φ(1), θ(1) and ψ(1) (all of them have the hole occupying the first rung) contribute to a
large extent to the correlation function. For an FM impurity there is little contribution form
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Figure 4. Binding energy of bound states of different symmetries as a function of impurity exchange
coupling Jm (J = 5.0, t = t ′ = 1.0, N = 50).
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Figure 5. Binding anergy of the ground state as a function of J/t for FM (Jm = −0.5), AFM
(Jm = 0.5) and NM (Jm = 0.0) impurities (t = t ′ = 1.0, N = 50).

the basis state ψ(1) due to unfavourable configuration (two of the three bonds are frustrated).
However, if the hole and impurity are on the same rung, the correlation function has largest
value for an NM impurity and smallest value for an AFM impurity.
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Figure 6. Impurity–hole correlation Cih in the ground state as a function of the distance dih of the
hole from the impurity (FM, AFM and NM) (J = t = t ′ = 1.0, N = 50).

5. Conclusions

In this paper we have solved analytically the many-body problem of a single hole in presence
of an NM impurity and infinite number of electrons for a ladder of infinite length. A continuum
of scattering states and antibound states are obtained in the triplet sector. In the singlet sector,
in addition to the states found in the triplet sector, bound states of the hole with the impurity are
also found. As the ratio J/t is increased from zero, successive bound states in the symmetric,
antisymmetric and symmetric channel appear. For large values of J/t all the three bound
states co-exist. As pointed out by Poilblanc et al [21], this is a characteristic feature of strong
correlation. Our analytical calculations for the ladder model can qualitatively confirm the
numerical results for small 2D clusters by Poilblanc et al [21, 22]. However, contrary to the
observation by Poilblanc et al, we find that the binding energy curve for the impurity–hole
bound state (in the symmetric sector) is lower than that of a bound pair of holes in almost the
whole of the parameter space, and this definitely indicates a strong pair-breaking effect [39]
by an NM impurity in the t–J ladder model. In the case of a single hole in the presence of
a magnetic impurity, the eigenvalue problem is solved numerically for a finite-sized ladder.
Since the number of basis states increases as N we can solve a large size ladder with relative
ease. Again, the results obtained are in qualitative agreement with those obtained by Poilblanc
et al [22] for 2D finite clusters. Impurity–hole binding is more favourable in the case of an
FM impurity than in the case of an AFM impurity. With increase in the strength of the AFM
interaction of the impurity with surrounding electronic spins, the magnitude of binding energy
rapidly decreases to zero. Comparison of the results between magnetic and NM impurities
indicates that NM impurities should act as stronger pair-breaking agents in strongly correlated
systems than magnetic impurities.
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